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Abstract

Non-local formulations have been intensively applied for the past 20 years to control the strain localisation resulting
from strain-softening constitutive laws. We propose a framework that encompasses most of these non-local approaches.
It relies on an energetic interpretation of both equilibrium equations and constitutive relations for generalised standard
materials. It allows a systematic exploration of the properties of these models. We focus here on three aspects: the
existence of solutions when applied to strain-hardening laws, the effective localisation control when applied to strain-
softening laws and the thermodynamic bases.

A quite extended analysis is led under some assumptions, the more restrictive being that all the internal variables are
dealt with the same regularising operator. It appears that only few approaches bring effective regularisation. Unfor-
tunately, they do not rely on thermodynamic bases so that the Clausius—Duhem inequality is not automatically fulfilled.
An alternative consists in giving up the assumptions of the analysis. In that case, it seems that no general result can be
stated. Moreover, an illustration in the context of brittle damage shows that slightly different formulations can result in
strongly differentiated behaviour, even though some specific choices lead nevertheless to a suitable model.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Difficulties encountered with numerical simulation of structures whose constitutive materials exhibit
softening (plasticity with softening, damage, coupled phenomena) led in the 1980s to interest for roughly
speaking “non-local” models, hoping they would be able to restore stability properties in these simulations.
The analysis was based on the recognition that models without an internal length would exhibit spurious
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mesh dependence, localisation effects towards bands of vanishing thickness and diffuse bifurcations. Many
authors develop or reappraise non-local ! approaches which can be classified in three families:

1. Incorporating in the classical continuum formulation either non-local or additional primal variables
(non-local strain, higher strain gradients or directors) (Triantafyllidis and Aifantis, 1986; Frémond
and Nedjar, 1996; de Borst and Sluys, 1991; Forest et al., 2000). These models require an extended ver-
sion of the principle of virtual work.

2. Incorporating non-local or gradients of internal variables or modifying the yield function with non-local
or gradients of hardening parameters (Bazant and Pijaudier-Cabot, 1988; Peerlings et al., 1996; Comi,
2001; Aifantis, 1987; Miithlhaus and Aifantis, 1991; de Borst and Miihlhaus, 1992; Svedberg and Run-
esson, 1997).

3. Incorporating non-local driving forces in the yield function (Pijaudier-Cabot and Bazant, 1987; Pijau-
dier-Cabot and Huerta, 1991; Comi and Perego, 2001).

In this paper an analysis of various types of non-local models will be conducted, starting from an ener-
getic framework based on a generalisation of the variational property associated with generalised standard
material formatted constitutive equations. Previous work has been performed for models with internal
variable gradients (Lorentz and Andrieux, 1999). Here, we focus on the regularisation by several ways of
some variables within the usual local constitutive relations, see also the review paper of Peerlings et al.
(2001) for a different approach of similar questions. Again, the framework proposed will be shown to
encompass several existing models or slight modifications of them. Some advantages can be gained from an
energetic approach concerning the general setting of the model as well as its numerical implementation, as
recalled now.

Even though finite element algorithms based on approximations of the displacement and the internal
variable fields follow naturally from energetic formulations, they can also be derived for other types of
approaches. Nevertheless, in the latter case, a global form of the consistency equation has to be derived
(Simo, 1988), and leads to a variational equation for the plastic multiplier (see for instance Miithlhaus and
Aifantis, 1991). For internal variable gradient models, a need for boundary conditions for the internal
variable field arises and the choice is somewhat arbitrary: zero normal gradients are used in most papers
without justifications, although Svedberg and Runesson (2000) remarked that this homogeneous condition
is the only one which ensures that a bifurcation may arise from a homogeneous state. Besides, when not
associated with an energy, non-local models generally lead to non-symmetric tangent operators which
render their use more difficult in numerical computations and in the analysis of the conditions for locali-
zation, as stated by Pijaudier-Cabot and Huerta (1991). Finally, non-energy-based models cannot auto-
matically ensure (at least) global fulfilment of the second thermodynamics law and examination of the
stability of solutions or even selection of stable solutions cannot be performed.

Apart from these considerations on the formulation of the models itself, the energy approach will be
used in this paper to lead a general analysis on the regularisation procedure by examining the conditions
under which the minimisation problems are well-posed. The paper is organised as follows. First, a recall of
energetic formulations for generalised standard constitutive relations is set out and extended to define a

" In order to fix the vocabulary, we will henceforth call “non-local” any operator or model which is weakly non-local in the sense
defined by Rogula (1982), that is operators or models entering relations that are not invariant with respect to any scale transformation
X' = ax of the physical space. This notion of weak non-locality is related to the existence of one (or several) internal lengths while
Rogula’s definition of strict non-locality relies on the examination of the support of functions that are in relation via the operator or the
model (a strictly local operator transforms any field in another field whose support domain is contained in the support domain of the
original field). Therefore, gradient models usually belong to the class of weakly non-local ones while regularised models usually belong
to the class of strictly non-local ones.
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global constitutive equation suited for non-local models. Then, a general approach to regularise state
variables is derived and a classification of different choices allowed by this approach is performed together
with the corresponding variational properties. The subsequent chapters are devoted to the analyses of these
different types of non-local models from the standpoint of the thermodynamic ground, the well-posedness
of the initial boundary value problem and the regularisation efficiency through localisation features. Links
with existing formulations or regularisation choices appeared in the literature are also detailed.

2. Energetic formulations

From now on, we restrict our attention to rate-independent generalised standard materials under iso-
thermal conditions (see Halphen and Nguyen, 1975). Despite the restrictions, such a framework is ap-
propriate to analyse regularised constitutive laws, thanks to its underlying mathematical basis. In addition,
infinitesimal strains are assumed for the sake of simplicity, even though this hypothesis may be relaxed (see
Lorentz and Cano, 2002) for an extension to finite strain.

Under these assumptions, the thermodynamic state of a material point is defined by the strain € and a set
of internal variables a. Derivation of the free Helmholtz’ energy @ (g, a) provides expressions for the stress ¢
and the set of driving forces A4 associated to a:

0 0P
GZE(S,Q), A:__(87a) (1)
The driving forces govern the rate of the internal variables @ through a flow rule and a consistency con-
dition which rely on a convex threshold function f(4):

o
i =72 (4) )
f(4)<0, 2=0, Af(4)=0 3)

/ is the plastic multiplier, in reference to plastic behaviour, and {4; f(4) < 0} is the reversibility domain in
the space of driving forces.

This section aims at showing that such a constitutive behaviour is equivalent to the minimisation of an
incremental potential energy. Mathematical optimisation then provides a framework to study the pro-
perties of the mechanical response, namely the well or ill-posed character of the problem. Definitions and
effects of regularisation can also be studied within this framework.

2.1. Incremental potential energy and related properties

To derive a minimisation principle from the constitutive equations above-mentioned, we proceed in three
steps:

¢ introduction of the dissipation potential,
o cxtension of the state variables and the potentials to the structure scale,
e time discretisation.

First, the dissipation potential A(a) is defined as the maximal dissipation for a given internal variable
rate a:
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A(a)d; max A4-a 4)
<o

Egs. (2) and (3) appear respectively as Euler’s equation and Kuhn and Tucker’s condition for the maxi-
misation problem (4) (see for instance Ekeland and Temam, 1974). Moreover, 4 can be recognised as the
Legendre—Fenchel transform or conjugate function of the indicator function of the reversibility domain
defined by f(4) <0 (hence, 4 is positive homogeneous of degree one, a characteristic of rate-independent
materials). Therefore, thanks to the convexity of the function f, the evolution equations (2) and (3) are
equivalent to:

of
24 o d e on) )
FA)K0, 220, Af(4) =0

d:

where an interpretation of the subgradient 04 is given by:
A€dd(a) = Va Aa) = A4(a)+A4-(a—a) (6)

Note that this equivalence clearly shows that generalised standard materials enforce a positive dissipation,
i.e. fulfilment of the Clausius—Duhem inequality. Indeed, by setting @ = 0 in (6), one obtains:

D=c-&—®=da> Aa) — A(0) = A(a) =0 (7)

def.
Note also that thanks to a characteristic property of subgradients for convex conjugate functions:
A €04(a) < acod"(4) (8)

where the conjugate function of the dissipation potential is the indicator function of the domain of re-
versibility:

A (4) :{

we easily derive the maximum dissipation principle of Hill, that is:

0 if f(4)<0
+o0o otherwise

©)

A€dAa) = acdA (A) < VA A(A) = A (A)+a- (4 —A)
\ (10)
VA sa. f(A)<0 A-a=>4-a
The second step consists in leaving the material point scale for the structure scale. Consider now the
fields of state variables, that is the strain field ¢ and the internal variable field a (note that the field is denoted
in the same way as its pointwise value to avoid cumbersome notations). Following a proposal of Germain

et al. (1983), the (global) free energy F and the dissipation potential D relative to the whole structure (body
domain Q) are defined by:

F(&a)z/gdi(s(x),a(x))dx (11)

D(a) = / Alafx)) dx (12)

Keeping in mind the formalism for generalised standard materials, a global constitutive relation is derived
from the potentials (11) and (12), in which the state variables are fields and the driving forces, including the
stress, are linear forms operating on these fields:
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oF oF
G—a(ﬁ,a), Affa(gaa) (13)

A €dD(), ie. Va D)= D(a)+ (Ala—a) (14)

where (-|-) denotes the duality product. It can be shown that the global formulation (13) and (14) and the
local one (1)—(3) are equivalent under some assumptions of regularity (Ekeland and Temam, 1974).

The global formulation seems to be the appropriate level to introduce some non-locality in a natural
way: non-local or higher order gradient terms can easily be introduced in the potentials while some vari-
ables can be replaced by non-local counterparts, as will be shown later. Moreover, the formalism of
generalised standard materials allows to retain thermodynamic properties, at least at the structural scale: as
in the local constitutive equation (6) for standard materials, the choice of the global evolution law (14) is
equivalent to a global maximum dissipation principle of Hill, a property used as a start point by Polizzotto
and Borino (1998) and Benvenuti et al. (2002) to derive a set of local evolution equations. Maximal
structural dissipation results in a positive dissipation of the structure, whatever the evolution of the state
variables, thus fulfilling automatically the second principle of thermodynamics. Nevertheless, local pro-
perties may be lost; this is not surprising since non-locality introduces coupling between material points so
that the principle of local action has to be given up. To retrieve a local positive dissipation, some non-
locality residual (Edelen and Laws, 1971; Polizzotto and Borino, 1998) or an extra entropy flux (Maugin,
1990) have to be introduced. However, a local definition of the dissipation does not seem necessary as long
as no thermal coupling is taken into account.

The third and last step requires a time discretisation because only the incremental (discretised) problem
can generally be expressed as a minimum principle. Consider a given time step [¢,#]; ¢~ and g denote
respectively the value of a quantity ¢ at the beginning and the end of the time step. Discretisation of Egs.
(13) and (14) by means of a backward Euler scheme leads to:

—é(s,a) €dD(a—a") (15)

If D is continuous at least in one point, which is usually the case, then (15) is equivalent to the following
minimum problem (see once more Ekeland and Temam, 1974):

a=argminE(g,a) with E(¢,a) = F(g,a) + D(a —a™) (16)
Integration of the global discretised constitutive law is expressed as a minimum of the incremental potential
energy E with respect to the internal variable field. Note that E is named ‘“‘incremental” because it depends

explicitly on the internal variables at the beginning of the time step a~.
Besides, the principle of virtual work reads:

Voe € KA° Oz/gzo(x)-ﬁs(x): <aai(s,a)

68> <= ¢ =argminE(g, a) (17)

e€KA

where K4 and KA° denote respectively the affine manifold of admissible strain fields (i.e. a strain field that is
compatible with a displacement field which respects the Dirichlet boundary conditions) and its associated
vector space. In this expression, we have implicitly assumed that there is no external work (no applied
force). This is a choice for the sake of simplicity. Else, the results to come would be preserved but would
also require to be expressed in terms of displacements instead of strains and the potential energy should
include the external work (as in classical elastostatics). Finally, the equilibrium equations are expressed as a
minimum of the incremental potential energy E with respect to the strain field.
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Were the incremental potential energy convex, coercive and lower semi-continuous, then both mini-
misations (16) and (17) would result in a single one with respect to the couple (¢,a) and would admit a
unique solution:

(¢",a") = argminE(s, a) (18)

&€KA
a

These properties are intimately related to strain hardening (see Marigo, 2002). In the case of strain soft-
ening, the potential energy is no more convex and (16) and (17) cannot be expressed a priori as a minimum
with respect to the pair (g, a). Nevertheless, Francfort and Marigo (1993) proposed to preserve the mini-
mum principle (18) as a characterisation of stable solutions. Unfortunately, they also showed in the context
of a simple damage model that there is no stable solutions because the potential energy is no more lower
semi-continuous.

Obviously, to retrieve a well-posed problem, i.e. existence of a finite number of solutions, the potential
energy should be altered, either its expression or the meaning of its variables.

2.2. Refinement of the potential energy

Since minimisation (18) should characterise stable solutions of the strain-softening problem and
nevertheless fails to retain any solution, an essential ingredient is surely missing in the local constitutive
behaviour and therefore in the global one too.

Led by a mathematical point of view, Francfort and Marigo (1993) departed from the lack of required
properties of the potential energy. The fact that convexity is not fulfilled is not surprising since bifurcations
are expected in strain-softening problems (see Benallal et al., 1993 for a review). But the questions of coer-
civeness and lower semi-continuity are more troublesome. To avoid the first one, these authors focused on a
partial damage law: the material cannot be totally damaged, some stiffness remains even at the ultimate
stage. Therefore, coerciveness is preserved, thanks to the residual stiffness. The second one is dealt with a
mathematical tool: the potential energy is replaced by its lower semi-continuous envelop (quasi-convexi-
fication of its integrand) so that the minimisation problem (18) is relaxed. In that way, solutions are re-
trieved. They can be interpreted as a fine mixture of sound and damaged layers that organise themselves to
minimise the energy. However, even though attractive, such a regularisation strategy suffers from the severe
restriction of partial damage and can therefore be applied in few cases only. Besides, tractable expressions
of the quasi-convexified are not available for 3D problems.

An alternative approach is based on physical considerations. In the context of strain-softening materials,
strain localisation is observed experimentally and therefore does not appear as a spurious artefact of the
model (see, for instance, Desrues and Chambon, 1985 for experiments on soils). When it occurs, the length
scale of the macroscopic mechanical fields becomes of the same magnitude as the microstructural length
scale, thus precluding the main homogenisation hypothesis of scale separation: classical homogenisation is
no more valid to derive the local constitutive laws. Several authors proposed to enrich the homogenisation
schemes to include this length scale interaction. When the interaction is given a priori, as for materials with
graded properties, Drugan and Willis (1996) succeeded in deriving a homogenised non-local constitutive
law. However, the task becomes still harder when the interaction results from the evolution of the macro-
scopic fields themselves, as for localisation: then, only rough approximations have been obtained so far.
Thus, in the context of hyperelasticity, Bardenhagen and Triantafyllidis (1994) introduced strain gradient
terms into the energy based on the analysis of a periodic lattice. For ductile damage, Gologanu et al. (1997)
enhanced Gurson’s model by taking into account gradient effects on the boundary of the elementary
representative volume; it also resulted in the introduction of strain gradient terms. Andrieux et al. (1996)
proposed a homogenisation scheme to get some guidelines for the introduction of the gradient of internal
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variables into the energy, based on the replacement of Taylor’s scheme by a first order variation of the
macroscopic internal variable field within a patch of elementary representative volumes. Other authors
preferred to introduce scale effects on the basis of phenomenological propositions, mainly in the context of
metal plasticity where the mechanism of dislocation interaction is well studied (see, for instance, Gao et al.,
1999; Fleck and Hutchinson, 1993; Forest et al., 2000). Whatever their basis, all these approaches result in
the introduction of some characteristic lengths of the microstructure in the macroscopic equations.

A link between both classes of approaches (mathematical relaxation vs. explicit interaction of the
microstructures) has been established by Lorentz (1999) for some models with internal variable gradients:
when the characteristic length goes to zero, the gradient model converges (in the sense of I'-convergence)
towards the relaxed model, provided that a residual stiffness remains.

2.3. Regularisation of the state variables

An alternative to the refinement of the potential energy consists in substituting a smoothed variable or a
smoothed driving force for its local counterpart into the state equations, the flow rule or the consistency
condition. This pragmatic way of introducing some regularisation has been used by several authors in the
past and is still intensively applied, especially in numerical simulations of damage. The purpose is evidently
to smooth up the abrupt spatial variations of the mechanical fields observed in localisation bands. In the
framework of the energetic approach, that consists in keeping the expression of the energy unchanged but
altering the meaning of the state variables within the potential energy. Such a regularisation can be achieved
in two steps.

First, a regularising operator R, acting on the strain field or the internal variable field, has to be chosen.
Consider for instance the internal variable field a. This operator produces the smoothed internal variable
field, say a, which is an element of a new space of functions Vg, desirably “smoother” than the functions of
the space of the original internal variable fields V:

R:V—-VgCV

ar—a = Ra

(19)

The definition of the operator R may rely on an integral as well as a differential characterisation, see for
instance the frequently used Gaussian convolution operator M, introduced by Eringen (1972) in the context
of non-local elasticity, or the gradient penalty operator P (Peerlings et al., 1996), which both involve an
internal length L.:

ofx,y) = —— exp(~(|x - y[})/2L2)

(Ma)(x) = a(x) = [ olx.p)ab)dy with i) 2 (20)
o Vi) = fy exp(— (b — vI)/2L2) dy
Pa = a solution of {"W fcda=a in@ (21)

Two natural demands arise on regularising operators: they must leave unchanged the constant fields and be
injective. The latter demand is based on the physical consideration that the “true’ state variable which is
used for the description of the local thermodynamic state of the material is the non-smoothed one, so that it
must be determined uniquely from the smoothed one. Remark also that the linearity of operator R is a
matter of convenience which ensures in particular that the regularisation involved in the rate constitutive
equations is the same (differentiation of a linear operator leads to itself).

The second step consists in substituting the smoothed state variable for its local counterpart into part or
all the potential energy. Depending whether the strain or the internal variables are smoothed, the process is
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Table 1
Different types of energy regularisations
Strain regularisation Internal variable regularisation
Coupled regularisation (¢*,a*) = argmin E(Reg, a) (¢*,a") = argminE(g, Ra)
I !
¢ = argminE(Re, a*) £ = argminE(g, Ra*)
at = argﬁlinE(Rs*,a) a* = arg ﬁlinE(s*, Ra)

Split regularisation (g*,a*) = argminF (g, Ra) + D(a — a™)
R
¢ =argminF(¢,Ra*) + D(a* —a™)
a* = arg ininF(sﬂ Ra)+D(a—a")
Uncoupled regularisation { £ =argminE(g, a*) { ¢ = argminE(e, Ra’)

a* = arg ininE(Rs*, a) a = argininE(s*,a)

respectively named strain regularisation or internal variable regularisation (it could also be a combination
of both):

e Strain regularisation: ¢ — Rg
o Internal variable regularisation: « — Ra

Several classes of models are obtained depending whether both minimisation problems with respect to
the strain and the internal variables respectively are concerned (denoted as coupled regularisation) or not
(denoted as uncoupled regularisation). Besides, the smoothed variable may be introduced into part of the
potential energy only, for instance the free energy and not the dissipation potential: this approach will be
named split regularisation. These various formulations are gathered in Table 1.

Each of them will lead to specific regularisation properties studied in the next sections, under the fol-
lowing assumptions:

rate-independent generalised standard materials,

1sothermal conditions,

infinitesimal strains,

no external work (only to simplify the presentation),

linear injective regularising operator that leaves constant fields unchanged, 2

when smoothing the set of internal variables, the same operator is applied on all of them.

2 The examples which highlight the analysis will be based without much loss of generality on the gradient penalty regularising
operator P as defined in (21) because of its attractive properties. We just mention here that this operator has its range included in
H'(Q), is self-adjoint and fulfils the demands of being injective, linear and leaving constant fields unchanged. For more details, a
mathematical study is presented in Appendix A.
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Three aspects are examined.

Effect on a well-posed problem: Applying a regularisation technique to a local problem which is initially
well-posed should result in a still well-posed non-local problem.

Thermodynamics: As we focus on generalised standard materials, the Clausius—Duhem inequality is
automatically fulfilled by the local model. The regularised one should enjoy the same property.

Effective regularisation: As soon as the local model exhibits strain softening, it may become ill-posed, in
relation with the fact that no length scale is selected for the localisation bands. Therefore, the regularisation
method could be considered effective as soon as the non-local model does select a minimal (non-zero) width.
The study of this selected band width will be achieved by a localisation analysis which is fully described in
Appendix B for the sake of completeness.

3. Coupled regularisation

A first class of regularised models, corresponding to the first line in Table 1, is studied in this section.
A state variable is replaced by its smoothed counterpart into the potential energy, while the solution of
the problem is still given by a minimisation with respect to both the strain field and the internal variable
field:

Er(g,a) = E(Re,a)
(¢",a") = argmin Eg(g,a) with < or (22)
a Er(g,a) = E(¢,Ra)

The denomination “coupled regularisation’ is clear: the minimisation is performed with respect to a
smoothed variable, thus coupled with the regularisation. Of course, the properties of the function to be
minimised are altered by the regularising operator, as expected when dealing with ill-posed problems.
However, they are also altered in the context of initially well-posed problems: in that case, a minimal
demand is that the problem does remain well-posed. This is not trivial, as shown in Section 3.1, and in-
volves a new demand for the regularising operator which implies some coerciveness, whatever the smoothed
variable.

Then, a second question of some importance is addressed: do initially ill-posed problems indeed become
well-posed once regularised? It is shown in Section 3.5 that the answer depends in general on the range of
the regularising operator. Unfortunately, when dealing with operators as designed in Section 3.4 to ensure
coerciveness, the problem remains ill-posed, a severe short-coming for this class of regularisation methods.

3.1. Effect on well-posed problems through an example

To illustrate the kind of issues that may be encountered, consider the problem of equilibrium of a
clamped bar with some imposed inelastic strain (1D problem) obeying a non-local linear elastic law, based
on the gradient penalty operator P as defined in (21) and Appendix A. Denoting by ey(x) the imposed
inelastic strain field, the energy of the bar reads:

W(s) = /0 %E(Ps —e) (23)

where ¢ = Ou/0x is the local strain, u the displacement field, / the bar length and E its stiffness. For the
prescribed boundary conditions u(0) = u(/) = 0, the problem can be expressed as:
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1
min W(e) with KA = {e € L*(]0,/[); (¢) = 0} and (&) = = ! / edx (24)
eeKA def. 1 Jg

Although the non-regularised problem (P replaced by Id) is obviously well-posed, with solution &(x) =

eo(x) — (eo), Eq. (24) does not admit solutions for any ey(x). Indeed, the first variation condition cha-

racterising the solution ¢ is:

ow

Voe GKA<§ 58> = /Ola- (Poe) = /O[(PTJ)&S: 0 with ¢ = E(Pe — ep) (25)

where PT denotes the transpose of P. This variational formulation, which expresses the equilibrium of the
bar, implies that P'¢ is constant, say equal to . As P is self-adjoint (Appendix A, Proposition 1d),
P'c = Po. Moreover, the inverse image of a constant field is itself (Appendix A, Proposition 1f), so that
a(x) = X. The constitutive law then reads:

vx  (Pe)(x) = %Jr eo(x) (26)

As Pg should belong to H'(]0, /[) (Appendix A, Proposition 1), fulfilment of (26) is impossible as soon as the
inelastic strain e, does not belong itself to H'(]0, /[), thus precluding the existence of solutions. This is of
course achieved with a discontinuous field ¢y and even with continuous distributions of e,, for instance:

x
1. -
=

3.2. Mathematical analysis

eo(x) = & (27)

The previous example shows that, even for very simple structures, the use of a smoothed variable may
preclude the existence of solutions, although the problem without regularisation would have been well-
posed (linear elasticity). The explanation for this issue is related to the alteration of the properties of the
energy function when introducing the regularising operator and requires a mathematical study of the
minimisation problem (24).

The energy function W can be expressed as a composition of the regularising operator and the energy for
local elasticity O (quadratic form which is coercive, continuous and strictly convex):

w=0oP: 25122 1R
1
SI—>§:P8>—>/*E(§—60)2
92

Minimisation of W admits solutions if W is proper (not infinite everywhere), lower semi-continuous for
L? weak topology and coercive (Ekeland and Temam, 1974). Let us confront W with these demands

(28)

e ¥ is proper since W (0) < +oc.

e P and Q are continuous as soon as e, belongs to L?: W is continuous too and therefore lower semi-con-
tinuous for L? strong topology. Moreover, P is linear and Q is convex: therefore, W is convex. It ensures
that W is also lower semi-continuous for L?> weak topology.

o As O(¢) — 0o < ||g|| — oo, W is coercive if and only if P is coercive in the sense that ||¢]| — oo =
|Pe|| — oo. But P is not coercive (Appendix A, Proposition 3); neither is .

In conclusion, the lack of coerciveness for the regularising operator results in the loss of existence of
solutions. Note that this problem is not specific to the gradient penalty operator: convolution operators
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with a bounded weighting function like (19) are not coercive either (Appendix A, Proposition 3). This fact
has already been observed in the context of non-local elasticity (Polizzotto, 2001): to ensure existence of
solution, the load fields have to be more regular than for local elasticity.

3.3. Numerical consequences

The lack of solutions has evidently straightforward consequences on the numerical simulation of such
problems, as highlighted by a spatial discretisation based on Fourier decomposition. In that way, consider
again the clamped bar and assume a discontinuous inelastic strain field e,:

{ . 0 ifx<0
eo(x) = 80H(§ — x) with H(x) = { 1 ifx>0 (29)
The numerical solution is based on a usual displacement formulation:
dv
min W| — 30
veH! (0.L]) <dX> G0

The displacement fields v are approximated by means of N sine functions as interpolation fields:
N .
Inx
= 2 uidilx)  where ¢;(x) = sin=- 31
v(x) ?:1 vid;(x)  where ¢,(x) = sin ; (31)

Minimisation with respect to displacement fields that belong to this approximation space leads to the
following linear diagonal system:

2 .
i (in
Bl 7 Sm(2>

Ku; = F  with K; = 5 W and F;, = ESQW (32)
2 2
The closed-form solution of this problem for N degrees of freedom is therefore:
N 0 i even
u(x) = ;uiq’)i(x) with u; = e (_112;;3)/2 <1 . izr;Lf) odd (33)

Convergence or not of the solution when the number of degrees of freedom increases is apparent by ob-
serving the behaviour of u; when i grows:

; L .
U ~ 2180(71)“*3)/2[—; if L. #0
(_1)(i+3)/2

u,%ﬂaoT if LC:O

(34)

The numerical approximation of the solution converges when the internal length L. is equal to zero (no
regularisation) whereas it does not as soon as L. # 0 (regularisation). This is illustrated in Fig. 1: non-
controlled oscillations and blowing up of the solution can be observed, mimicking numerical behaviours for
more complex problems. Yet, it should be noticed that blowing up of the solution is unmistakable only for
high number of modes whereas for coarse discretisations, numerics may almost be believed working, since
spurious oscillations are localised in the neighbourhood of the discontinuity only (middle of the bar).
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Fig. 1. Clamped bar with discontinuous inelastic strain. Regularisation with operator P (L. = 0.1).

3.4. A proposal to retrieve coerciveness: a new family of regularising operators

From the previous part, it appears that classical regularising operators fail at preserving the well-posed
character of a problem because they are not coercive. Therefore, these operators are inadequate and a new
family of regularising operators has to be introduced.

Inspired by inverse problem methods (Tikhonov and Arsenine, 1977) as well as non-local elasticity
(Eringen, 1987), we propose the following class of operators:

P,=9ld+(1-9)P, 0<y<]l (35)

y = 0 would correspond to operator P alone, while y = 1 would result in no regularisation at all. Such an
operator enjoys all the desirable properties of P and moreover is coercive, thanks to the identity contri-
bution (Appendix A, Proposition 4).

Numerical evidences of the restored coerciveness when 7 # 0 is illustrated again by the numerical
treatment of the bar with discontinuous inelastic strain. The closed-form solution for N degrees of freedom
of the minimisation problem (30) which now involves the regularising operator P, is:

0 i even
- (+3)/2 1—%i2n2L5
@) =D ug,(x) with u” = 5 (—1.) e i odd (36)
i1 22 PrPL?
I+ 7
The behaviour of u\” when i grows is:
(i+3)/2
0 57, (21 1
u;"" = 2180 T ; (37)

Therefore, the numerical solution converges for any strictly positive value of y, as illustrated in Fig. 2. Note
that the asymptotic convergence speed is independent of the internal length L. of P.
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Fig. 2. Clamped bar with discontinuous inelastic strain. Regularisation with operator P, (L. = 0.1, y = 0.2).

3.5. Effect on ill-posed problems

Replacing a state variable (strain or internal variable) by its smoothed counterpart through an operator

R is actually equivalent to change the space which the variable belongs to, as it can be noticed at once (for
the strain, for instance):

argmin E(Rg,a) = argminE(g, a) (38)

gelV g€r
a a

Therefore, the question of regularisation is totally included in the nature of the range V; = R(V). Namely, if
small wavelength functions are included in V%, then localisation is allowed with a length scale as small as
desired for € and then for €: there would not be any control of the localisation by the introduction of such a
regularising operator. Unfortunately, the usual regularising operators attenuate short wavelengths but do
not cut them off. Consequently, introducing regularisation through such operators does not prevent from
localisation: initially ill-posed problems remain ill-posed.

To illustrate this disappointing observation, consider again the example of the clamped bar. To ensure
coerciveness, we choose the regularising operator P, (35). P, as well as P preserves the mean value of a field
(straightforward application of Appendix A, Proposition le) and is bijective (Appendix A, Proposition 5),
so that:

P,(23(0, 1)) = L*(]0, 1)) _
{ By = o = P,(KA) = KA (39)

where we remind that K4 denotes the admissible strain for the clamped bar problem, as defined in (24).
Therefore, there is not any regularisation of the set of kinematically admissible strain fields (V; = V). (38)
then allows to conclude that the regularised problem is as ill-posed as the initial local one may have been:
the regularisation is not effective. This constitutes a severe breakpoint for such approaches based on
coupled regularisation.
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4. Split regularisation

The failure of the previous class of models to deal with strain softening is related to the fact that a
variable is replaced by its smoothed counterpart in the whole expression of the energy, so that its only effect
is to change the function space within which the variable is sought. Therefore, a more promising approach
consists in mixing local and smoothed variables. A possible way consists in keeping the local internal
variables within the expression of the dissipation potential while replacing them by their smoothed
counterparts into the expression of the free energy, second line of Table 1:

(¢",a") = argminEg(¢,a) with Er(g,a) = Fr(g,a) + D(a — a”) and Fr(g,a) = F(g,Ra) (40)
In that way, the local evolution equations, governed by the dissipation potential, are preserved while the
state equations, governed by the free energy, are altered by the regularising operator R, hence a possible
link with driving force regularisation as presented in the literature (see Pijaudier-Cabot and Bazant, 1987;
Comi and Perego, 2001). This link is explored below through the example of isotropic plasticity.

This class of models based on split regularisation is examined in terms of effect on well-posed problems
as well as effective regularisation. Unfortunately, it leads to the same conclusions as previously:

e a coercive operator is generally required for the regularisation,
e regularisation does not improve the behaviour of the model with respect to localisation phenomena.

This is in apparent contradiction with the literature which asserts that driving force regularisation does
lead to effective regularisation. This paradox will be resolved in Section 6 for a specific constitutive law.

4.1. Expression of the non-local constitutive relation
First, as the strain field is not altered, the stress keeps its usual definition, see (17):

Ve € KA° <aa—?(s,a) 8£> = /Qc(x) -0g(x) =0 with o= %—f(a,Ra) (41)

Moreover, a characterisation of the minimum (40) with respect to a is given by (13) and (14) when the time
step goes to zero and provides the evolution equation:

_ Ok
Oa
It involves the global driving force whose expression is:

Vda <a§:(g,a) 8a> _ /Q Z—(j(s,Ra)(RSa): /Q RT<2—f(s,Ra))8a (43)

By taking (42) and (43) into account, the evolution law associated with the regularised incremental po-
tential energy simply reduces to the following pointwise law:

(g,a) € 0D(a) (42)

_ _ @
A€0d4(a) with 4 = —RTZ—(S,Ra) (44)
a

Or equivalently:

o
a=l7(4) with 4 = —RTZ—(D(.«:,Ra) (45)

fA)<0, 220, if(4) =0 a
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4.2. Link with driving force regularisation

Eq. (45) shows that the evolution of the internal variable is governed by the same evolution equation as
the local model but with two distinct features:

o the driving force appearing in this equation is the original force, smoothed by the transpose of the regu-
larising operator defined for the internal variable field;
o the original force has to be evaluated with the smoothed internal variable.

Comparison between this regularised energy approach and other propositions of the literature can be
achieved by looking at a simple model of plasticity. This model is described by three state variables
(g, €P, p): the strain, the plastic strain and a hardening variable. The local free Helmholtz’ energy, the stress
and the driving forces associated to the plastic strain and the hardening variable are:

1 1
¢(Sa£p7p) = 5(8 - Sp) ‘E- (8 - sp) +§hp2

b
Gza—:E-(s—sp)
O
od (46)
_ T . (e _ &P\ —
Ap = 63P7E (e—¢”)=¢
0P
Ay=——=-h
P ap p

where E is the elasticity tensor and /4 is the hardening (positive) or softening (negative) modulus. The
dissipation potential is defined as in (4) by a yield function f which depends on the driving forces only, so
that its subgradient is characterised by a consistency condition and normal flow rules:

f(0,4,)<0, 120, if(s,4,) =0

o o 47)

o
&P =1 % o, (0,4,)

(0‘7141,), p=14

A model with smoothed force as understand from the related literature can be built in a simple way by
substituting a smoothed driving force for 4, into the evolution equations (47), therefore named driving
force regularisation. Denoting by r the applied linear regularising operator, the evolution equation be-
comes:

f(G,Z) <0, 420, /lf(G,Z) =0

oY 6 pei L (gqy VRA=TAE) (48)

P

212

This equation is compared to the evolution equation obtained by the regularised energy approach (45) with
a regularising operator R acting only * on the internal variable p:

f(6,4)<0, 2>0, Af(0,4) =0

L with 4 = R"4,(Rp) (49)

&P =)"(6,4), p= 34 (6,4)
P

g1

3 This is not in agreement with the assumption that all the internal variables are smoothed with the same operator. Nevertheless, this
is not of great importance regarding the question of existence of solution that will be examined in the next section.
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When taking into account the expression of 4, given in (46), both models coincide in this simple case if:
r4,(p) = R"4,(Rp) <= — hrp = —iR"Rp

T (50)
r=R'R
This example shows the link between driving force regularisation and split regularisation as soon as the
regularising operator r acting on the driving force is self-adjoint and positive. Of course, the exact coin-
cidence in this case results from the linearity of 4, with respect to p. Generally, both classes of models are
only strongly related, through a comparison between (45) and (48).

4.3. A demand for coerciveness

As the evolution equation is expressed as a minimisation with respect to the internal variables (40), the
question of coerciveness should be raised again. We could have expected that the dissipation potential D
which depends on local variables may ensure coerciveness. Unfortunately, for rate-independent materials,
D is positive homogeneous of degree one only, so that the coerciveness of E in appropriate function spaces
is generally brought through the free energy F (see Section 6.2 for an exception). Therefore, the arguments
in Section 3.2 are still valid: the regularising operator R has again to be coercive.

The following example which is inspired of (Engelen, 1999) illustrates this assertion by showing once
more that a non-coercive regularising operator may preclude the existence of solution. Consider a 1D bar of
length / whose constitutive law is the non-local strain-hardening (% > 0) plasticity model described pre-
viously with von Mises yield function:

f(0,4) = Geq + A — 0 with 4 = PT(—=hPp) = —hP’p (51)
where o4 is von Mises’ effective stress and ¢¥ is the yield stress, for which a spatial distribution of the

following form is assumed:
¢¥ discontinuous

o' ¢ H' (JoZ[) for instance {01‘ ¥ (x) = o {1 + m} (52)

For high enough loading, plasticity occurs everywhere, so that the consistency condition leads to:
Oeq — 0°(x)

h
Thanks to the equilibrium equation, o, is constant; thus, the right hand side does not belong to H'(Q)
while the left hand side should: no solution exists although the local problem obviously admits one (ob-
tained by replacing P by Id).

W f(6,4) =0 (Pp)(x) = (53)

4.4. Localisation analysis

In the case of split regularisation, the local internal variable and its smoothed counterpart are simul-
taneously present in the expression of the energy, so that we could hope that the effective regularisation
property is enhanced compared to coupled regularisation (Section 3.5). Unfortunately, a localisation
analysis as described in Appendix B leads to the opposite result, as shown below.

The analysis relies on the determination of the non-local model tangent operator for a homogeneous
material state (£°,a°). First, differentiation of the stress—strain relation (43) with respect to time along with
the flow rule (47) lead to:

PP, .. OO of

. 0 0 0 . . : Y 0
6——6868(8,a)er—agaa(a,a)Ra with 4 /laA(A) (54)
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where the homogencous character of the material state has been explicitly used, along with the fact that
constant fields are left unchanged by the regularising operator. Then, thanks to the assumption of linear
comparison solid, the consistency condition reduces to:

SR | S8 @ L R (15 0) | <o (59)

Now, we recall that the same linear regularising operator is applied on all the internal variables, an essential
requirement here. Then (55) is equivalent to:

RN P
R\ ) @ i+ L T2

f0:>

of
o 3 (eha )34

(AO)R)} 0 (56)

If RT is assumed injective (obviously true for self-adjoint injective operators), Eq. (56) allows to derive RA
since it is equivalent to:

af 0 62@ 0 . af 0 0 af o
Finally, the rate constitutive law reads:
o’ N 1 o*d of . of o*P ST (58)
Gede | Of 0@ Of \ 0&da 04 oddade )| ETE

04 0aOa 04

where H is actually the tangent operator for the local constitutive relation, as defined in (B.1). In conse-
quence, the rate constitutive law for the regularised model is the same as for the purely local model: R does
not bring much regularisation. The localisation analysis in Appendix B explains why the same pathologies
are to be expected for the non-local model and the local one.

5. Uncoupled regularisation
At last, we analyse the effect of smoothing one variable (strain or set of internal variables) and mini-
mising with respect to the other (respectively set of internal variables or strain), third line of Table 1. It

corresponds to the following non-local models:

strain regularisation:

¢ = argminE(g, a*) 6= oo (£,a)
at = argsminE(Ra* a) a0 68645 (59)
! 7 4= —22 (Re,a) € 04(a)
Oa
internal variable regularisation:
¢ = argminE(g, Ra*) G = o2 (¢, Ra)
a* = ar 8minE (e',a) ar a86(15 (60)
= ga ) At—0 A:—a(s’a) EaA(a)

Expression (59) allows to recognize a close relation between strain regularisation and some proposals of the
literature (namely Pijaudier-Cabot, 1995; Peerlings et al., 1996; Comi, 2001), even though these authors do
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not smooth the whole strain tensor but only some of its invariants. Internal variable regularisation (60)
encompasses non-local damage as proposed by Bazant and Pijaudier-Cabot (1988), except for their loading/
unloading condition which depends on the non-local damage variable to enforce the pointwise Clausius—
Duhem inequality whereas the consistency condition is expressed in terms of the local damage variable.

In these proposals of the literature, the coerciveness of the regularising operator has not been questioned.
Actually, it does not mind. Indeed, the coerciveness of R does not play a role anymore since the minimi-
sation is not led with respect to the smoothed variable. Therefore, regularising operators as convolution
ones or gradient penalty P can be applied without special care.

However, the problem cannot be expressed as a single minimisation problem with respect to both the
strain and the internal variables since the energies used in the equilibrium equation and the constitutive
equation are not the same anymore. That is why this approach may appear as an algorithmic scheme rather
than a thermodynamics-based formulation. In particular, the global dissipation is not prevented a priori
from being negative.

Despite this drawback, one can expect to gain finally some effective regularisation as pointed out in the
literature. It is confirmed by a localisation analysis which leads to tangent operators that exhibit a sta-
bilising term compared to the local model, unexpectedly the same one for strain regularisation as for in-
ternal variable regularisation.

5.1. Thermodynamic consequences of the loss of a single energy

By uncoupling minimisation and regularisation, the definition of a single energy used in both equilibrium
equation (minimisation with respect to the strain) and constitutive equation (minimisation with respect to
the internal variables) is lost. On a mathematical ground, it results generally in a non-symmetric formu-
lation, while on a physical ground, the Clausius—Duhem inequality is not automatically fulfilled. This is a
departure from the framework of generalised standard materials.

Indeed, consider the non-local constitutive equations (59) or (60) obtained when the time increment At
goes to zero. The usual equilibrium equations are preserved, which means that the stress ¢ that appears in
the constitutive relation (59) or (60) also respects equilibrium. To express the dissipation, the free energy
has to be defined. This is achieved by the usual argument that for reversible load history, the dissipation is
equal to zero, so that the stress can be expressed as the variation of the free energy with respect to the strain.
This leads to the following choices of free energy and expressions for the dissipation:

strain regularisation:

F(s,a):/Q<15(s,a):>D:/Qo-é—F:/Q[—aa—f(s,a)}a (61)

internal variable regularisation:

F(s,a):/g2d5(s,Ra):>D:/Qc-é—F:/Q[—RTg(s,Ra)}d (62)

Unfortunately, the constitutive relation (59) or (60) only ensures that:
VxeQ Ax)a(x) =0 (63)

where A4 is no more equal to the dual variable of & within the expression of the dissipation. Therefore, the
dissipation cannot be claimed positive a priori.
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5.2. Localisation analysis for strain regularisation

To examine the regularisation properties of this class of models, we rely on the results given in Appendix
B. The tangent operator of the model has to be derived for a homogeneous state (£°,a°). Starting with (59),
straightforward calculations show that:

__62@ 0 0y . ¢ (68@ (& a)aA( ))®<6A( )6 GS(RSO a°)> R
_686£(£’a).8+ of | R&° of ‘Ré

01 D aazg Re )z (4)

Taking advantage of the fact that R leaves the homogeneous field € unchanged, and introducing the
tangent operator for the local model H and its elastic part E, as defined in (B.2), one finally gets:

6=H Ré+E- (¢ —Ré) (65)

Appendix B then allows to conclude. Thanks to its definite positiveness, E brings some stability in (65). The
bifurcation analysis shows that a non-zero minimal wavelength is selected with a non-coercive operator R,
whatever the softening modulus. Therefore, the width of the localisation band cannot be zero: there is
indeed regularisation compared to the local model. On the contrary, with coercive operator R, the minimal
wavelength depends on the softening modulus and may vanish for too steep softening. That is why non-
coercive regularising operators should be preferred in this approach.

(64)

5.3. Localisation analysis for internal variable regularisation

A localisation analysis is performed in the same way as for strain regularisation. After straightfor-
ward calculations, the tangent operator of the non-local model for a homogeneous material state (£°,a°)
reads:

of , 0, 0f RN
_5243 0 N SR 0 6A( )6/1( )aaas( @)
= ge0e & RE) E 4 g o (@ ROR | S of (66)

= (40 gl

6A( )6a6a( )6A( )

Taking advantage again of the fact that R leaves homogeneous fields unchanged, one finally gets the same
expression for the tangent operator as obtained with strain regularisation (65):

6=H-Ré+E- (¢ —Rg) (67)

The conclusions of the localisation analysis are the same: both non-local models bring effective regulari-
sation, preferably with a non-coercive regularising operator R.

6. Application to a brittle damage model

At this stage, the analysis can be summed up as follows. Under the assumptions recalled in Section 2.3,
we observe that:

e coupled regularisation requires a coercive regularising operator which actually does not provide any regu-
larisation;

o split regularisation generally requires a coercive regularising operator which does not either provide any
regularisation;
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e uncoupled regularisation brings some regularisation, preferably with a non-coercive operator. But the
thermodynamic framework is lost: the Clausius—Duhem inequality is not automatically fulfilled.

However, it has been noticed in Section 4.2 that split regularisation is close to driving force regulari-
sation, which indeed allows a treatment of strain-softening laws, according to the literature (see Pijaudier-
Cabot and Bazant, 1987; Comi and Perego, 2001). This is in apparent contradiction with our analysis.

Actually, the results in the literature are generally obtained with a specific constitutive law, designed to
model brittle elasticity. The material state is characterised by the strain € and a scalar damage variable d
which ranges from 0 (sound material) to 1 (broken one). The stress—strain relation depends linearly on d.

The expression is slightly different in the two articles; it respectively reads:
6= (1-d)E" ¢ (a) (Pijaudier-Cabot and Bazant, 1987) (68)
6=(1-RJE’ ¢ (b) (Comi and Perego, 2001)

with E° the initial stiffness. The evolution of damage is governed by a yield function of the smoothed energy
density release rate Y:

1 0
420, 7 —k(d)<0, d(T—k(d) =0 with { ¥ =38 E ¢ (69)
Y =R"Y

The essential difference with (41)-(45) is the dependence of the yield function with respect to the (local)
damage variable: the model does not belong to the framework of generalised standard materials.

A localisation analysis shows that both models lead indeed to regularising properties. But the slight
difference between (68)a and b results in a different tangent operator, namely:

6=E-(¢-R"¢)+H R (a) (Pijaudier-Cabot and Bazant, 1987)

6=E-(¢-RR¢)+H-RR'¢ (b) (Comi and Perego, 2001)

We propose now two ways of recasting such models within the framework of generalised standard
materials and examine the conclusions of our analysis.

6.1. Single internal variable and uncoupled regularisation

The local constitutive relation corresponding to (68) and (69) does not appear as a generalised standard
material because the threshold, thus the dissipation potential, depends explicitly on the internal variable
and not only on the driving force. To retrieve nevertheless a generalised standard material, the idea consists
in moving the dependence of the threshold from the dissipation potential to the free energy, thus altering
the definition of the driving force, and preserving a constant threshold in the dissipation potential. This is
achieved by the following specific choice of free energy and yield function, where a kind of stored energy
appears in the free energy:

d
®(g,d) = %(1 —d)g - E"- 8+/ (k(s) — k°)ds  with £° = k(0) (71)
0
fA)=a—K (72)
with 4 the new driving force associated to damage:
A= E e —k(d)+k =Y —k(d) +k° (73)

Such a model is generalised standard and equivalent to the local version of (68) and (69).



E. Lorentz, S. Andrieux | International Journal of Solids and Structures 40 (2003) 2905-2936 2925

With these expressions, the assumptions of our analysis are fulfilled. Therefore, to get any regularising
properties, only an uncoupled regularisation may succeed. By choosing to regularise the strain field through
the operator R', a straightforward application of (59) leads to:

o=(1-d)E ¢ (74)

d>0, Y —k(d)<0, d(Y —k(d)) =0 with ¥ = %(RTS) "E’- (R"g) (75)

The difference between (68a) and (69) and (74) and (75) relies in the definition of the smoothed driving
force. It can be expected that both are close:

7=RTGS-E°-8> w%(RTs)~EO~(RTs):I~/ (76)

This closeness is confirmed by the fact that both models lead to the same tangent operator for homoge-
neous state (g°,d"), as used in the localisation analysis.

6.2. Two internal variables and split regularisation

In the previous sub-section, a formulation close to that used in the literature is obtained through un-
coupled regularisation. Its main drawback consists in the lack of thermodynamic bases. Therefore, we
examine here another approach: it is based on split regularisation, so that it respects thermodynamics.
However, our analysis showed that such an approach was doomed regarding regularising properties. This
conclusion relied on:

o the usual lack of coerciveness brought by the dissipation potential alone, therefore requiring a coercive
regularising operator;

o the same regularisation for all internal variables (obviously fulfilled when there is only one) leading to the
same tangent operator as for the purely local model.

Therefore, to get an effective regularisation through split regularisation, the model should exhibit at least
two internal variables and the corresponding dissipation potential should bring enough coerciveness so that
the regularising operator need not be coercive. At last, a specific localisation analysis should be led since no
general results are available in that case.

The first step consists in proposing a local model with two internal variables and equivalent to the local
model corresponding to (68) and (69). For that purpose, we depart from (71) and (72). The free energy
exhibits two terms, the elastic energy and a stored energy, the latter being responsible for the change in the
effective threshold. Now, we assume that these mechanisms are described by separate internal variables: d
still measures the decrease of the elastic modulus while a new internal variable x governs the evolution of
the effective threshold. The corresponding free energy and the driving force expressions read:

1 K
q5(g,d,rc):§(1—d)s-E0~£+/ (k(s) — k%) ds (77)
0
00 1 0 _ 00
ad—st ¢ and K= 6k_k k(i) (78)

Then, to get a model equivalent to (71) and (72), we specialise this more general model by enforcing that
both internal variables remain equal to each other by means of the evolution equations. This is achieved by
the following dissipation potential:
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Yy : . (0 ifxek
A(d, k) =k'd + I+ (d) + Ijoy (k —d)  where Ix(x) = {+oo if x & K (79)
enforces enforces
d=0 K=d

The flow rules and the consistency condition are expressed through an interpretation of (5) with the dis-
sipation potential (79):

{g;j and 1>0, Y+K—-k<0, AY+K—£k)=0 (80)
Thus, Egs. (77)—(80) is equivalent to (71) and (72). The first step is achieved: a generalised standard model
with two internal variables and equivalent to the previous one is derived.

The next step consists in regularising this model through a split regularisation. Here, only the damage
variable d is smoothed. Thanks to this choice, a straightforward application of (41), (45) and (80) leads to
the following constitutive equations, which appears to be exactly the model proposed by Comi and Perego
(2001):

6=(1-RAE ¢ (81)

d>0, Y +K -k <0, dY +K —k") =0 with

_ 1
_RTy _pT( L. go.
Y=R Y_R< ¢-E s) (82)

2
K =k — k(d)

Finally, the regularising properties and the coerciveness of the model have to be checked, since some as-
sumptions of our main analysis have been relaxed. The localisation analysis proves the regularising
properties, see (70)b for the tangent operator. The coerciveness should be examined with respect to the pair
(d,x). In fact, thanks to the indicator function within the dissipation potential which enforces d = «, the
energy function is coercive with respect to (d, k) as soon it is coercive with respect to « alone. And this latter
is ensured thanks to the stored energy term which is not affected by the regularising operator. More pre-
cisely, the function space which the internal variables belong to depends on the form of the stored energy,
that is on the threshold function k(d).

6.3. Smoothing the hardening variable

In the previous section, we succeed in deriving a non-local model that exhibits both thermodynamic
foundations and effective regularisation. However, this is possible only by giving up the assumptions of the
general analysis: two different regularising operators have been applied on both internal variables (namely
R and Id respectively on d and x). But it should be emphasised that this good result is actually highly
dependent on the model.

As an illustration, consider again the same local model (78)—(80) with two internal variables, but now,
the hardening variable x is smoothed instead of the damage one d. Again, the dissipation potential alone
does not bring enough coerciveness with respect to the pair (d, k) to proceed in reasonable function spaces:
the free energy has still to ensure coerciveness with respect to k. But now, the stored energy term is affected
by the regularisation, so that a coercive regularising operator R should be adopted, for instance:

R such as R"R =P, = yld + (1 —y)P (83)
Besides, the threshold function is taken linear k(d) = ko + hd. The constitutive equations then read:

6=(1-dE & (84)
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d>0, Y—yhd—(1—9)hd -k <0, d(Y —yhd —(1—y)hd —k") =0
with 20 (85)

That corresponds to the model of Benvenuti et al. (2002), except for the fact that they chose a regularising
operator which is not self-adjoint (while they considered a self-adjoint one would have been highly de-
sirable).

To examine the localisation control, the tangent operator is calculated:

6=E-(¢-P'¢)+H P& (86)

We recognise the expression which has often been obtained in this article, except for the fact that the
regularising operator that appears in the rate equation is now the inverse of P,. Thanks to Appendix A,
Proposition 5, this inverse can be calculated (with L. the characteristic length of P and L.,/y the one that
appears in the inverse):

S L
P =1 T’P“W (87)

Applying the results of Appendix B, effective regularisation is brought within the model as soon as:
1
0<;<1:>y>1 (88)

Even though the mathematical properties of P, and especially coerciveness, are preserved even for y > 1
(we recall that a weighted average of a local and a non-local contribution leads to 0 < y < 1), the physics of
(83) is questionable since the local part of the smoothed variable is strengthened while the non-local one is
even subtracted: no interpretation in terms of a mixture of local and non-local variable is available any-
more. This is in agreement with the results of Benvenuti et al. (2002) since they required a negative non-
local hardening term. * Moreover, as the operator P !is coercive, the control of the localisation band width
is lost when damage becomes too brittle, see again Appendix B: in this model, that corresponds to high
value of the damage variable, as observed again by Benvenuti et al. (2002).

Finally, it appears that a slight change in the non-local approach (smoothing one internal variable in-
stead of the other, while they are equal in the local model) results in totally different conclusions. It seems
that when the assumptions summed up in Section 2.3 are not fulfilled, no general results are available and
the efficiency of the regularisation becomes highly dependent on the model.

7. Summary and conclusion

It has been shown that the format of generalised standard materials allows to express both the con-
stitutive and the equilibrium equations as a variational principle: solutions are obtained as the minimum of
a potential energy with respect to the strain field and the internal variable field. Taking advantage of this
energetic formulation, non-local models of various types have been derived by replacing into the energy
some of the local variables by smoothed counterparts, thus retrieving several proposals of the literature.
The benefits of a single framework rely in the systematic exploration of the properties of these models, with

4 Actually, these authors led their localisation analysis on a variant of this model where the damage function is quadratic in the
stress—strain relation. Nevertheless, it seems that the conclusions are preserved in the case of a linear damage function.
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regard to three aspects: their behaviour on strain-hardening constitutive laws, on strain-softening ones and
their thermodynamic bases.

Under some assumptions, it has been shown that only two classes of non-local models effectively control
strain localisation, but unfortunately, they lack from thermodynamic grounds. The first one relies on the
replacement of the local internal variables by their smoothed counterparts within the stress—strain relation,
while the second one consists in using a smoothed strain field when computing the evolution of the internal
variables. Therefore, both of them may appear as algorithmic ad hoc schemes more than physics-based
formulations. Nevertheless, the number of devoted publications for nearly twenty years now clearly
demonstrate their potencies to deal with effective structural computations.

If thermodynamic grounds are looked for in addition to effective regularisation, the assumptions of our
analysis have to be given up. But in that case, no general results seem to arise. Worse, minimal differences
between models result in quite different behaviour. In that context, Comi and Perego’s non-local model
(2001) probably appears as the best choice for brittle damage, even though its numerical implementation
may not be efficient according to Jirasek and Patzak (2002). However, its application to other types of laws
is not systematic at all.

In conclusion, we think that a refinement of the potential energy by introducing strain gradients or
internal variable gradients instead of replacing local quantities by smoothed ones appears as a quite more
promising approach. Indeed, general frameworks can be obtained which guaranty satisfactory properties
for strain-hardening as well as strain-softening laws, rely on thermodynamics and lead to efficient numerical
treatments.
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Appendix A. Mathematical properties of the penalty regularising operator

For completeness, some mathematical results are presented here. They concern mainly the regularising
operator P which is characterised by any of the three following propositions:
P:1*(Q) — L*(Q)
u—u
Differential system
u—L2Au=u in Q

u solution of { Vi-on=0 on 0Q

Variational formulation

ueH (Q)
{ Yoe H' [ uv+L2VuVv= [,uv (A-2)

Minimisation of a functional

7 = argmin {/Q(v —u)’ + L}(Vv)’ (A.3)

veH (Q)
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The latter characterisation grounds the denomination ‘““gradient penalty operator” since this regularising
operator appears as a least square approximation of the original field u with a penalty term that limits high
gradients.

This operator can be cast in the general context of convolution operators by choosing as weighting
function @ Green’s function G of the differential system (A.1):

(Pu)(x) = / Glx y)uy)dy (A4)

In the case of 3D infinite medium, the Green function associated to the gradient penalty operator is easily
deduced from the well-known Green function for Helmholtz’ equation:

G(x,y) = % =P (_ﬁlx__yﬂ”) /L) (A.5)

For 1D situations, with body domain Q =]0, [, Green’s function G(x,y) is plotted in Fig. 3 for several
values of x and reads:

L. \ tanh- L. L.

c

1< ! coshy—sinhy>costh if x<y

Glx,y) = (A.6)

L. L. L.

c

1 1 X L,X y .
— [ == cosh— — sinh— = >
(tanh % cosh sinh ) cosh 7 ifx>y

To simplify the following demonstrations, we assume from now on that L. = 1, without lack of gene-
rality. The following notations are introduced: (u,v) denotes the usual dot product in L*(Q) while
l[u|| = (u,u)""? is the associated norm.

Proposition 1. The gradient penalty operator P fulfils the following properties:

(a) P is an application whose range is included in H'(Q)
(b) P is a positive operator

(c) P is linear and injective

(d) P is self-adjoint

Gxy)
5

0 0.2 04 0.6 0.8 1

Fig. 3. Green function associated to operator P (L> = 0, 1) on the line segment ]0, 1[.
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(e) P leaves unchanged the mean value:

Yu € L*(Q) /QPu:/Qu

(f) The constant functions are left unchanged by operator P. Respectively, if Pu is constant, then u = Pu
(constant)

(2) P is continuous in L*(Q)

(h) The principle of maximum holds true for operator P:

infessu=sup{Ce€IR; C<u ae.}

inf <Pu< .
L ess us Fus Sup ess u {supessu:mf{Ce]R; C>zu ae}

Proof

Property (a). We refer to the characterisation (A.3) for operator P. Thanks to the properties of the function
to minimise (strict convexity, continuity and coerciveness in H'(Q) as soon as u € L*(), the problem (A.3)
admits a unique solution # which belongs to H'(Q).

Property (b). We refer to the variational formulation (A.2) and take as test function v = Pu:
(u, Pu) = (Pu,Pu) + (VPu, VPu) > 0

Property (c). The linearity results directly from the characterisation (A.2). To prove the injectivity, we show
that ker P = {0}. The characterisation (A.2) again leads to:
Plu)=0=Yve H(Q) /QuU:O
As H'(Q) is dense in L*(Q), the following equation also holds:
Yo € L*(Q) /quzo
Besides, u belongs to L*(), so that the previous equation proves u = 0.

Property (d). P is sclf-adjoint if and only if:
Yu,v € L*(Q) (u,Pv) = (Pu,v)

This result can be obtained by casting Pv and Pu as test functions in the characterisation (A.2) of Pu and Pv
respectively:

[ PuPv+ VPuVPu = [, uPv -
{ Jo PvPu+ VPoVPu = |, vPu = , uPv = i vPu

Property (e). The result is readily obtained by applying the variational formulation (A.2) with test function
v=1.

Property (f). First, let us denote J the function to minimise in (A.3):

50 = [ (0= + (7o)
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Consider that u = ¢ is a constant function. Then, J(c) = 0. Moreover, it can be noticed that:

Yoe H'(Q) J(v) =0
It proves that ¢ is the (unique) minimum of J, that is Pc = c.

Respectively, consider that Pu = ¢ is constant. As we know now that Pc = ¢, the injectivity of P allows

to conclude that u = c.
Property (g). First, by taking v = Pu in the variational formulation (A.2), one gets

IPull” + [ VPul* = (Pu,u)
A straightforward application of Cauchy—Schwartz inequality leads to the conclusion

2 2 2
[Pul[” < [[Pul|” + [[VPu||” = (Pu, u) < || Pulf[|uel| = [[Puel] < [Jue]

It can be noticed that this upper bound is optimal since the equality is reached for constant fields.
Property (h). See Brezis (1983). O
Proposition 2. The function u— ||Pul| is not coercive in L*(£).

Proof. To prove this negative result, a counter example will be exhibited with Q =|0, 1[. More precisely, we
build a sequence (¢,) such as, on one hand, Pp, — 0 and, on the other hand, there exists o > 0 such as
ll@,|| = a. Such a sequence proves the lack of coerciveness, since:

?, llo,ll P, ||

with u, = s Nl = — oo while ||[Pu,| = =l<o0
P, || [P, 1P, ||
Now, let us show that such a sequence (¢,) can be given by:
¢,(x) = /ne™™ withn >2 (A7)

First, consider the norm of ¢,:

1 1 1
||wn||:\// nem = [l e sa= /L1 e >0
0 2 2

Then, the regularised sequence (P¢,) has to be derived. Solving the differential equation (A.1) leads to:

(Po,)(x) = vn (e”"— " cosh(l — x) + ne ! coshx)

1 —n? sinh 1 sinh 1
Finally, Po, goes indeed to zero:
P, || =An"'? +o(n™?) =0 O

n—oo

Proposition 3. The function u— ||Mul| is not coercive in L*(Q) for bounded functions . This is also true for
integrable singular weighting function of the form w(x,y) = ||x — y||”", but the proof is more tedious and will
not be detailed in this paper.

Proof. We consider Q =|0, 1] and the sequence (¢,) as defined in (A.7):
¢,(x) = V/ne™ with n >2
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Then, Mg, is equal to:
1

(Mo,)) = Vit [ expl-m)otx.»)dy
As o is bounded, say |w(x,y)| < B, then Mg, is also bounded by:

(Mo <BVE [ ey =it e
Finally, it can be shown that Mg, goes to zero, and thus M is not coercive:

IMo,| <Ba 21— —0 O
Proposition 4. For any positive operator R of L*(Q2), R, = yId + (1 — 7)R is coercive as soon as 0 < y < 1.

Proof. For 0 <y < 1, we have the following inequality since R is positive:
Vue (@) [IRul® = 7 flull® + (1 =) Rull® + 27(1 = 9)(t, Rut) > 77 Jul|®
It is then straightforward that:
Yu e LH(Q) |jul| — oo = |[Rul — oo O

Proposition 5. Consider the operator P with internal length L., denoted by P\*). Then, the operator
P, = yId + (1 — y)P%) is invertible when 0 < y < 1 with inverse:

1

Pl =7pem
oy Y

Proof. Let us denote w = P,u and u = Py, Then, the characterisation (A.1) leads to:

w=yu+ (1—y)u=yu—L2Au)+ (1 —y)u=u—yL>Au
ou _ = u=PLVly
on
The conclusion is immediate:
w—(1-=7)u 1

1— :
u=plw="" T g ——pted|y, O
y y y

Appendix B. Localisation analysis

In this appendix, we present an analysis to measure the effective regularisation brought by non-local
models. It is based on an estimation of the localisation band width selected by non-local models and it is
achieved by means of a bifurcation analysis in the same way as Pijaudier-Cabot and Benallal (1993) did for
a brittle elastic non-local damage model. Therefore, we restrict our attention to an infinite homogeneous
incrementally linear and rate-independent medium. It results in the following assumptions:

e bifurcation from a homogeneous state (£°,a°),
e the boundary conditions are not taken into account,
e the real constitutive relation is replaced by the linear comparison solid.
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Under these assumptions, it has been showed that most of the regularisation methods examined in the
article lead to rate constitutive laws of the form:

6=H-Ré+E- (¢ — Rg) (B.1)

where H and E denote respectively the tangent operator for the local model and the elastic operator for the
constitutive rate law. Their expressions for the rate-independent model (1)—(3) read:

R 1 2 of of 2
- H=E - - B.2
de0e’ Ty e g(asaa 6A)®<6A 6a68> (B2)
04 Oada 04

We claim that thanks to the definite positive character of the elastic tensor E, the second term in the right
hand side of (B.1) brings some additional stability compared to the purely local model. To prove this
assertion, we carry on the localisation analysis in the special case of a regularising operator R based on the
gradient penalty operator P:

R=P,=ld+ (1 — )P (B.3)

Consider a velocity perturbation in the direction n of the form:

V(X) = Agy,(x)  with ¢4 (x) = exp(—ién - x) (B.4)
where ¢ is the wave number, A the amplitude of the perturbation and i the imaginary constant (i* = —1).
The corresponding strain rate is:

£(x) = f%(A®n+n®A)<pén(x) (B.5)

As the boundary conditions are neglected, such perturbations are eigenvectors of P,:

. 1 -~
P}'(/’fn(x) = ia_“;QDgn(X) with )vcf =74+ /

with L. the characteristic length of P. Substituting (B.5) and (B.6) in (B.1) and writing the inner equilibrium
equations for the stress rate leads to:

H'(¢) = (H+ w,($E)
dive = 22 [nH ()nJA =0 with 1 —J¢ L2z 1-7 (B.7)

wv(i):i—é:(l_)})mv <wy(é) < .

where w, (&) measures the stabilising influence of the elasticity tensor E for a perturbation of wave number
£, as plotted Fig. 4. It can be noticed that this stabilising influence is higher for smaller coerciveness
parameter y, even becoming infinite for non-coercive operators (y = 0). Finally, the rate problem admits
non-trivial solutions if and only if:

3¢ n det nH (On] =0 < I¢,n p'(&n)<0 (B.8)

with p*(&,n) the smallest eigenvalue of nH"(&)n.
To draw some conclusions, we will also denote p,(n) < u,(n) < us(n) the eigenvalues of nHn and
e1(n) < ey(n) < e3(n) the eigenvalues of nEn, so that the condition for localisation in the loca/ medium reads:

on () <0 (BY)
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1071

,€)

L&

Fig. 4. Stabilising influence of the elasticity tensor for a given perturbation.

We have the following properties (see for instance Wilkinson, 1965):

f(E=0,n) = p(n) (B.10)

©(¢m) = () + ,(8) er(m) = py(n) (B.11)
=7

1 (& m) < gy (m) + @, (E)es(m) (B.12)

Finally, the conclusions of Pijaudier-Cabot and Benallal (1993) are retrieved:

e The criterion for the occurrence of bifurcations obtained for the non-local model is similar to that for the
corresponding local one. Moreover, the condition for localisation in the local continuum is a lower
bound of the criterion for bifurcation in the non-local continuum, thanks to (B.10) and (B.11).

e For y = 0 (non-coercive regularising operator), the wave lengths 21/ for localised perturbations cannot
be below a certain critical value, thanks to (B.11) and the fact that w, goes to infinity with smaller wave
lengths:

vE&n  w (&) = gy (n) + wo(E)er(n) = min g (m) + o (&) min e (n)

———
>0

. (B.13)
) » . _ _ miny 4y (n)
VC > écvn :u (gan) > O Wlth (U()(éc) - minn e] (n)

e For y # 0 and sufficiently brittle materials, the wave lengths 27t/¢ for localised perturbations may go to
zero because of (B.12), which hints at preferring non-coercive regularising operator (y = 0) to perform
regularisation:

VEm e (Em) < () + o(E)esm) < oy (m) + e

\ (B.14)
7)e3(nc) then V¢ p*(&,n.) <0

1—
v

if In, My (nc) < -
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